Paradoja de Russell
Publicado: Mié Nov 04, 2009 3:19 pm
Hola, ¿cómo andan? Hacía tiempo que no entraba a cyberateos.
Bueno, si conocen la paradoja de Russell, les quería preguntar si tiene solución y cuál es.
Si no la conocen, se las cuento, está muy buena:
La paradoja de Russell trata sobre conjuntos. Podemos clasificar a todos los conjuntos en 2 clases: los que se contienen a sí mismos y los que no se contienen a sí mismos.
Los conjuntos mas comunes son conjuntos que no se contienen a sí mismos, por ejemplo el conjunto de todos los libros del mundo no se contiene a sí mismo, porque el conjunto no es un libro. A ese tipo de conjuntos (que NO se contienen a sí mismos) se le dice "conjuntos normales".
Pero también existen conjuntos un poco mas raros, que se contienen a sí mismos, o sea, que el mismo conjunto es uno de los elementos que lo forman. Por ejemplo, pensemos en el conjunto de todas las cosas que NO son manzanas. ¿Ese conjunto es una manzana? No, por lo tanto es un elemento de él mismo. ¿se entiende? Otro ejemplo podría ser el conjunto de todos los conjuntos. Se contiene a sí mismo, porque por ser un conjunto es un elemento de él mismo. A este 2do tipo de conjuntos (que se contienen a sí mismos) se les dice "conjuntos singulares".
Cada conjunto o bien es normal, o bien es singular. ¿por qué? porque o se contiene a sí mismo, o no se contiene a si mismo, no hay término medio. Tampoco puede ser normal y singular a la misma ves, y tampoco puede ser que no sea ni normal ni singular. O se contiene, o no se contiene. O es normal o es singular.
Y aquí viene la paradoja:
Piensen en el conjunto de los conjuntos normales. A ese conjunto llamémosle "C".
La pregunta es: ¿C es normal o singular? (antes de seguir leyendo piénsenlo ustedes mismos)
Bueno, supongamos que C fuese normal. Si C es normal, C tiene que estar dentro de C, porque C es el conjunto de todos los conjuntos normales. Pero si C está dentro de C, estamos diciendo que se contiene a sí mismo, o sea que no puede ser normal. Llegamos a un absurdo. Seguramente ustedes estarán pensando: "ah, bien, entonces si no es normal, es sigular". Bueno, entonces supongamos que C fuese singular. Si C es singular, no es normal. Por lo tanto, C no está dentro de C. Pero si C no está dentro de C significa que C es normal, o sea que no es singular. Llegamos a otro absurdo!!!
Por los 2 lados se llega a un absurdo!!!
¿entienden?
saludos!
Bueno, si conocen la paradoja de Russell, les quería preguntar si tiene solución y cuál es.
Si no la conocen, se las cuento, está muy buena:
La paradoja de Russell trata sobre conjuntos. Podemos clasificar a todos los conjuntos en 2 clases: los que se contienen a sí mismos y los que no se contienen a sí mismos.
Los conjuntos mas comunes son conjuntos que no se contienen a sí mismos, por ejemplo el conjunto de todos los libros del mundo no se contiene a sí mismo, porque el conjunto no es un libro. A ese tipo de conjuntos (que NO se contienen a sí mismos) se le dice "conjuntos normales".
Pero también existen conjuntos un poco mas raros, que se contienen a sí mismos, o sea, que el mismo conjunto es uno de los elementos que lo forman. Por ejemplo, pensemos en el conjunto de todas las cosas que NO son manzanas. ¿Ese conjunto es una manzana? No, por lo tanto es un elemento de él mismo. ¿se entiende? Otro ejemplo podría ser el conjunto de todos los conjuntos. Se contiene a sí mismo, porque por ser un conjunto es un elemento de él mismo. A este 2do tipo de conjuntos (que se contienen a sí mismos) se les dice "conjuntos singulares".
Cada conjunto o bien es normal, o bien es singular. ¿por qué? porque o se contiene a sí mismo, o no se contiene a si mismo, no hay término medio. Tampoco puede ser normal y singular a la misma ves, y tampoco puede ser que no sea ni normal ni singular. O se contiene, o no se contiene. O es normal o es singular.
Y aquí viene la paradoja:
Piensen en el conjunto de los conjuntos normales. A ese conjunto llamémosle "C".
La pregunta es: ¿C es normal o singular? (antes de seguir leyendo piénsenlo ustedes mismos)
Bueno, supongamos que C fuese normal. Si C es normal, C tiene que estar dentro de C, porque C es el conjunto de todos los conjuntos normales. Pero si C está dentro de C, estamos diciendo que se contiene a sí mismo, o sea que no puede ser normal. Llegamos a un absurdo. Seguramente ustedes estarán pensando: "ah, bien, entonces si no es normal, es sigular". Bueno, entonces supongamos que C fuese singular. Si C es singular, no es normal. Por lo tanto, C no está dentro de C. Pero si C no está dentro de C significa que C es normal, o sea que no es singular. Llegamos a otro absurdo!!!
Por los 2 lados se llega a un absurdo!!!
¿entienden?
saludos!